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Differential Groupoids and Their Application
to the Theory of Spacetime Singularities
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The transformation groupoid = OM x G, whereO M is the total space of the gener-
alized frameG-bundle over spacetime with a singular boundary, is not a Lie groupoid
but a differential groupoid, i.e., a smooth groupoid in the category of structured spaces.
We define this concept and use it to investigate spacetimes with various kinds of sin-
gularities. Any differential transformation groupoid can be represented by an algebra
of operators on a bundle of Hilbert spaces defined on the groupoid fibers. This algebra
reflects the structure of a given fiber even ifitis a fiber over a singularity. It is also shown
that any spacetime with singularities can be regarded as a noncommutative space. Its
geometry is done in terms of a noncommutative algebra defined on the corresponding
differential transformation groupoid. We focus on the structure of “malicious singulari-
ties” such as the ones appearing in the beginning and in the end of the closed Friedman
universe.

KEY WORDS: differential groupoid; classical singularities; structured spaces;
singular boundaries; spacetime.

1. INTRODUCTION

In the present paper, we continue our research on spacetime singularities
by using methods of generalized geometries. In the standard approach, classical
spacetime singularities are regarded as ideal points of spacetime or as elements of
its “singular boundary,” and one attempts to collect information on the existence
of singularities and possibly on their nature by approaching them, in a kind of a
limiting process, from within the spacetime manifold (Clarke, 1993; Hawking and
Ellis, 1973). In our program, we are looking for broader mathematical categories
than that of sufficiently smooth manifolds which would allow us to regard even
the strongest singularities as “internal elements” of a generalized space. In Heller
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and Sasin (1995a,b,c) we have applied to this end the theory of structured spaces,
developed previously by us in Heller and Sasin (1994). It has turned out that
singularities of milder kinds (the so-called regular and quasi-regular singularities,
in the classification of Ellis and Schmidt, 1977) nicely surrender to the methods
of structured spaces, but the strongest singularities (such as the ones appearing in
the closed Friedman world model and in the Schwarzschild solution), called by us
malicious singularities, still create serious problems. For instance, the initial and
final singularities of the closed Friedman universe form a single point of Schmidt’s
b-boundary which is not Hausdorff separated from the rest of spacetime (Bosshard,
1976; Johnson, 1977). The structured space methods transparently disclose the
mechanism of this behavior, but can hardly supply a remedy.

Schmidt’'s method of defining the-boundary of spacetime consists in con-
structing the Cauchy completio@ M of the frame bundl€d M over spacetime
M (with the help of a Riemannian metric dd@M) and “projecting it down” (by
using the action of the structural gro@ on O M) to obtainM = 9,M U M,
whered, M is theb-boundary of spacetimil. In Heller and Sasin (1996, 1999)
we pushed forward the “desingularization” process by constructing a groupoid
I' = OM x G and defining on it a noncommutative algebtalt has turned out
that the fibers of”, even the ones over malicious singularities, are isomorphic to
the entire groupss. By using methods of noncommutative geometry we were able
to prove several theorems formulating the conditions under which various types
of singularities appear (Heller and Sasin, 1999).

The method of constructing a noncommutative space with the help of a smooth
groupoid is well known (Connes, 1994, pp. 99-103); however, to apply it to spaces
with singularities we had to go beyond the category of smooth manifolds. In our
previous works we did that in a more or less implicit way. One of the goals of the
present paper is to do this explicitly and in a rigorous manner. This is achieved in
Section 3 where we define the concept of the groujilde category of structured
spaceqwe call it differential groupoid, and explore some of its properties. To
make the paper self-contained we give, in Section 2, a short review of necessary
tools from the theory of structured spaces.

Our second goal is to further develop our methods in the study of classi-
cal singularities appearing in relativistic cosmology and relativistic astrophysics.
Main tools serving this end are differential transformation groupoids and suitable
(noncommutative) algebras on them. We prepare these tools in Section 4, and test
them on simple toy models in Section 5. In Section 6, these tools are applied to
the study of malicious singularities and, finally, in Section 7, we summarize our
main results. Some information on a given singularity (even if it is a malicious
one) is contained in its differential dimension (a concept defined in the theory of
structured spaces) and in the isotropy group of the “singular fiber.” This group
can be thought of as measuring the “strength” of the singularity: for fibers over
malicious singularities it is isomorphic to the entire grdsifor fibers over milder
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singularities it is isomorphic to a certain subgroupGafand for fibers over non-
singular points itis isomorphic to the trivial subgroupg®tconsisting of its neutral
element). These properties are reflected in the structure of the representation of
the corresponding differential groupoid in a Hilbert space, and to a certain extent
in a noncommutative algebra defined on this groupoid.

2. STRUCTURED SPACES

Let (M, 7) be a topological space, adca sheaf of real continuous functions
on (M, 7). The symbolC(U), U € 7, denotes the cross sectionbnU.

Definition 2.1. The sheatf is said to be alifferential structureon M if for any

openset) € T and any functiond, ..., f, € C(U) andw € C*(R"), the super-
positionw o (f1, ..., fy)belongstd(U). The pair (M, C) is called thestructured
space if topology is important we also writeM, z, C).

Example 2.2. Let M be a differential manifold, and the sheaf of smooth func-
tions onM. C is a differential structure oM, and the pair i, C) is a structured
space.

Let us consider a presheBfon a topological spaceéV, t). For any open set
U €1, afunctionf : U — R is said to be docal D-functionon M, if for any
point p € U there exists a neighborhodtiof p and a cross sectiane D(V) such
thatf |U NV =g|UnNV. The presheaf of locab-functions onM is denoted
by D*. Infact, D" is a sheaf onl{l, t), and this sheaf is isomorphic with the sheaf
associated with the presheaf

Let now (M, C) be a structured space, aAch nonempty subset &fl. Let us
consider the presheéf| A of restrictions of cross sections 6fto open subsets
of A. The differential structur€, := (C | A)* is called a differential structure
inducedfrom M to A, and the pair , Ca) astructured subspacaf (M, C).

Let (M, C) be a structured space apd= M any of its points. BYC,, we shall
denote the space of all germs of the sltgafthe pointp, i.e., the set of equivalence
classes of the equivalence relatisp given by

f=pge flW=g|W
for f eC(U), gelC(V),peWcCUNV,U,V,Wer. Cpis alinear algebra

overR.

Definition 2.3. A linear mappingv : Cp — R, such that
v(f-g) =f(p) - v(9) + 9(p) - v(f)
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for f, g € Cp, is said to be théangent vectoto the structured spacd/( C) at p.
Let us denote by ;M the linear space of all tangent vectors k,(C) at p.

Definition 2.4. By the (ocal) dimensiorof a structured spacéV{,C) atp € M
we understand dirfip M.

Example 2.5. Let (M, 7, C) be a structured space, apdn equivalence relation
on M. We form the quotient topological spackl (e, t/0). The quotient sheaf
C/p, given by

C/pU)={f:U—>R: fom,|n,*(U)eC(r,(V))}

for U e t/p, with 7, : M — M/p being the canonical projection, is a differ-
ential structure onNl/p, t/p), and M/p, t/p, C/p) is the quotient structured
space.

In principle, there is no limitation on the topologyappearing in the defini-
tion of structured spaces. Howeverrit= t¢(w) is the weakest topology in which
functions belonging t6(M) are continuous, then the sh&aiks determined by the
algebra of global sectiod M), and many geometric problems considerably sim-
plify. The spacesN, z¢, C), which now can simply be denoted byi( C), where
C = C(M), are calledSikorski differential spacesr S-space$or short (Sikorski,
1967, 1971, 1972). Any S-spackl(C) can be interpreted as a structured space
(M, €), whereC is a sheaf of the forr€(U) = C | U, forU € zc. (M, C(M)) is
evidently an S-space. The topologyw) is, in general, weaker than It can be
shownthat = ¢ ifand only if, foranyU e v and any poinp € U, there exists
a function¢ € C(M), calledbump functionsuch thatp(p) = 1 and supp C U
(Helleret al.,, 1992).

Let (M, C) be an S-space. We say that its differential struciiggenerated
by a subseCy of C, written C = GenCy, if any function f € C can locally be
presented in the form

flU=wo(g1,...,00)|U,

whereU € tc,w € C*°(R"), g1,...,0r € Co,n € N.
Lemma2.6. Bounded functions on an S-space generate its differential structure.

Proof: Let (M, C) be an S-space, ar@@j, the subalgebra o of bounded func-
tions onM. Let us consider the familB of functions of the formB = {x o f; f €
C}, wherex : R — R s given bya(x) = tarr! x. Of course B C Cy,.

We shall show tha€ = GenB. Indeed, letf be any function ofC, and p
any point ofM. Let us suppose that the pom¢f (p)) has a neighborhood. We
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define the functiorg(x) = tanx - ¢(x) if x € V, andg(x) = 0 otherwise, where
¢ is a bump function centered &{p). It can be seen that

flU=Bo(xo f)|U,

whereU = (a o f)~1(Vo) with V, a neighborhood off (p) contained inV on
which the bump functiop = 1. This means that the differential struct(@eis
generated by and consequently also I§. O

Definition 2.7. Let (M, C) and (N, D) be structured spaces. A continuous map-
ping f : M — N is calledsmoothif, for any cross sectiog € D(U), the super-
positiong o (f | f~1(U)) is an element of(f ~1(U)). In such a case, we write
f:(M,C)— (N, D).

The setof all structured spaces as objects with smooth mappings as morphisms
constitutes a category—tleategory of structured spacegseometry of structured
spaces was systematically developed in Heller and Sasin (1995a).

Structured spaces are a suitable tool for investigating various spaces with
singularities (Heller, 1992; Heller and Sasin, 1995a,b,c, 1996, 1999). In all these
studies Schmidt’s construction of theboundary of spacetime (Schmidt, 1971)
proved to be useful. Now, we prepare a more general setting (in the category of
structured spaces) for this construction. _

Let (M, C) be a structured space such thét= M U dM with M a smooth
manifold which is open and denselih. Thed M is called thesingular boundary
of M (in particular, it can be Schmidts-boundary of spacetime). Further let
7. TM — M be the tangent bundle ovéM (for details see Heller and Sasin,
1995b), and let us consider the Whitney sum

"= x--x7) | T"M:TM@®---&TM —> M.

We defineOM := OM U (x")~1(dM), whereO M is the total space of the frame
bundle overM. In the “singular fibers” we choose all possible setsdngent
vectors. In this way, we obtain tlgeneralized frame bundiver M

7: MO —> M,

wherer = 7" | OM. _
Let G be the structural group of the bundi® M, =, M). G acts onOM to
the rightOM x G — O M. Let us notice that

OM/G = OM/G U (z")H(9M)/G = M U M.
Example 2.8. Let M = M U {Xo} such that the only open neighborhoodxgfin
M is the entireM (xp is a malicious singularity, see below Section 6). In this case,

@™ (%)) = {(0, ..., 0}



924 Heller and Sasin

since dimTy,M = 0. Indeed, the global cross sections of the structured gheaf
are constant functions. This means that the space of its germs is isomorphic with
R, and consequently each tangent vectoas the zero vector (Heller and Sasin,
1994).

3. DIFFERENTIAL GROUPOIDS

We begin this section with a brief description of the groupoid structure (see,
for instance, Paterson, 1999, Chapter 1) mainly to fix the notation.@gwpoid
we mean a sel’ with a distinguished subsét’ c I' x I and two mappings,
one-:I'> » I' defined by %, y) — x -y, called multiplication and another
~1:T — I defined byx — x~!such thatx=1)~! = x, calledinversion(we treat
multiplication in the same way as the composition of functions, i.e., we begin
multiplying from the right).I'? is called theset of composable elemenBoth
mappings are supposed to satisfy the following conditions:

(i) if(x,Y), (y,2) e I'?then Ky, 2), (x, y2) € I'? and Kky)z = x(y2),
(i) (y,y ) er?forallyerl, and if x,y) € I'’> thenx"(xy) = y and

(xy)y t=x.

We also define thset of unitsI'® = {xx~% x € '} ¢ T, and introduce the
following mappings: thesource mapping d I — I'° by d(x) = xx, and the
target mapping r: ' — I'? by r (x) = xx 1. Let us notice that two elements
y e T can be composed (multiplied) with each other, i, y) € I'?, if and only
if d(x) =r(y).

For eachu e I'° let us define the sets

My={xel: dx) =u}=d )
and
MN={xel: r(x)=u}=r"1u).

Both these sets give different fibrations bf The setl'| :=T"NT\ is closed
under multiplication and inversion. It is called tts®tropy groupat u.

If H c T is closed under multiplication and inversion, it defines siib-
groupoidof I with the set of unitd® = d(H) = r (H) (Landsman, 1998, p. 271).

Groupoids can be regarded as generalizing and unifying the properties of
groups and equivalence relations. If we think of a group as describing symmetries
on the whole set, the groupoid, being a “group with many units,” should be thought
of as describing partial symmetries. The groupoid structure on a set tells us, just as
any equivalence relation, not only which elements of this set are equivalent, “but
it also parametrizes the different ways in which two elements can be equivalent”
(Weinstein, 1996). In fact, every equivalence relation is trivially a groupoid.
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The above is purely algebraic construction, butwe can add to itthe smoothness
structure. This is done in the following way (Paterson, 1999).

Definition 3.1. A groupoidI" is asmoothor Lie groupoidif

(i) T is a smooth manifold,

(i) T°is a Hausdorff submanifold df,
(iii) every 'Y andT, is Hausdorff in the relative topology,
(iv) the multiplication and inversion maps are smooth,
(v) the range and source maps are submersions.

In the following definition we generalize the above concept to the category
of structured spaces.

Definition 3.2. A groupoidI" is adifferential groupoidf

(i) T is astructured space,
(i) % 1Y, Ty, for everyu e I'°, are Hausdorff structured spaces,
(iii) multiplication and inversion maps are smooth
(iv) the range and source mappings are submersions (called also coregular

mappings).

In this definition, smoothness should be understood in the sense of Defini-
tion 2.7, and submersion in the category of structured spaces is defined in the
following way.

Definition 3.3. A smooth mapping
f:(M,C)— (N, D)

is said to be aubmersioror acoregular mappingf for everyx € M there existan
open neighborhood of x, an open neighborhood of f(x), a structured space
(No, Do), and a diffeomorphism

¢ : (U, Cuy) — (V, Dy) x (No, Do)
such thatpr; o ¢ = f | U, wherepry : V x Ng — V is the obvious projection.
This definition is a straightforward generalization of the definition given by

Waliszewski (1972, 1975) for S-spaces. Roughly speaking, it says that a mapping
is a submersion if it is locally the projection of a Cartesian product.

Lemma 3.4. A subgroupoid H of a differential groupoill is a differential
groupoid.

Proof: H is closed with respect to multiplication and inversion by the sub-
groupoid definition.H is also a structured subspace Idfwith the differential
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structure induced from that &f, and multiplication and inversion iH are smooth
as restrictions of smooth mappingsa

In many applications it is important to have a Haar system on groupoids. It
is evident that if we restrict a differential groupoid to its regular fibers, i.e., to the
fibers over a smooth manifold, we obtain the Lie subgroupoid, and the problem of
the existence of Haar systems on it reduces to the problem of the existence of Haar
systems on Lie groupoids (see, for instance, Paterson, 1999, pp. 61-64). In the
cases considered in the following sections, a Haar measure on the corresponding
differential groupoids always exists (see below).

4. DIFFERENTIAL TRANSFORMATION GROUPOID
AND ITS C*-ALGEBRA

Transformation groupoids (also called action groupoids) form an important
class of Lie groupoids (see, for instance, Landsman, 1998). In this section, we
present their generalization to the category of structured spaces.

Let E be a structured space, and let a gr@iact on it to the rightE x G —

E. This action leads to the bundl& (7, M = E/G). The Cartesian product
I' = E x G has the structure of a groupoid (we call differential transformation
groupoid). The elements of are pairsy = (p, g), wherep € E andg € G. Two
such pairs/; = (p, g) andy, = (pg, h) are composed in the following way:

y2v1 = (pg, h)(p, 9) = (p, gh),

and the inverse off, g) is (pg, g~1). If we representy = (p, g) as an arrow
beginning atp and ending apg, then two arrows/; andy, can be composed if
the beginning of/, coincides with the end of;. The set of units is

r’={y'y:y eT}={(p.€): peE}.

To see that this groupoid is indeed a differential groupoid ( in the category
of structured spaces), it is enough to show that mappihgedr are smooth
surjections (in the category of differential spaces). But it is clear from the fact that
the mappingg : I' — I'’ x Gandy : ' — I'° x G, given by

#(p,h) =((p,e),h), for(p,h)erl,
and

¥(p,h) = ((ph,€),h), for(p,h)el,

are diffeomorphisms satisfyingr, o ¢ = d andpryo ¢ =r.

Let us also notice thal = E x G is a Hausdorff groupoid. Indeed, the
Cartesian produck x G (G can even be a discrete group) of two Hausdorff
spaces is a Hausdorff space.
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We have

Cipe =1{(p,9): g€ G}
and
r®® = {(ph™*, h): h e G}.

In what follows, we shall abbreviate the symbdlg, ey andI'(P® to 'y andI'P,
respectively. If an elememt = (p, g) € I is visualized as an arrow fromto pg,
the setl", can be thought of as the set of arrows which begirpiref, and the set
[P as the set of arrows which end at, €).

Now, we prove the useful lemma.

Lemma4.l. Uyeg Tpg = Ugee TP9 = pro*(x), where pr=my o g and x=
m(p).

The lemma says that the counterimage @& M under the projectiompr is a
sum ofg-equivalent groupoid fibers of arrows that begirpat E, resp. end ap,
where p is such thatry (p) = x. Two fibersT', andI' (I'P andI'%) are defined
to be equivalent if there existse G such thafy = pg.

Proof: We prove the second part of the lemma; the first one goes analogously.
Lety € Ugee TP#97). This implies thay = (pgh™?, h), and

pr(y) = mm(we(pgh™, h)) = mm(pgh™) = 7u(p) = X,

i.e.,Ugeg TP99 ) € pri(x).
Now, lety e pr—1(x). This implies that ify = (q, h), say, then

prm(pre(d, h)) = 7m(q) = x = 3g € G, q = pg.

Therefore,y is of the form (pg, h). Hencer(y) = (pgh, €), and this means that
y € Ugee TP99. O

In all cases considered below (unless the contrary statement is evident from
the context), we shall assume that on the grGupere exists a left Haar measure.
Since all fibers of the groupoili are isomorphic withG, the Haar system can
be defined o, andT" can be treated as a locally compact Hausdorff groupoid
(see Paterson, 1999, p. 32).

We shall use the following representation of the grougdoidEvery element
y of the groupoid is represented as an operator from the Hilbert sp#t® to
the Hilbert spacét' ") whereH" = L%(I'Y). We thus define the representation

L:T — EndH), 1'0))
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by
Ly)E)m) =E( ), 1)

wheret e L2(190), n e ') (for details see Paterson, 1999, p. 93).

On every groupoid™ we can define an involutive algeby. = C°(T", C)
of compactly supported, complex valued functions. Beb € A. andy € T.
Multiplication in A is defined in the following way:

@b = |

L)

a(b0r) = [ alyri o) s 2)
Ca(y)

wherey = y, o y1 and the integration is with respect to a Haar measure. The

involution is defined by

a*(y)=a(y1).

If the groupG is honcompact, the algebré; is not unital. In this case, to
avoid difficulties connected with this fact, we perform the following construction.

We define the algebraly := pry,(C*(M)). This is of course the com-
mutative algebra with the standard pointwise multiplication of functions (notice
that the functions ofd; are constant on the equivalence classes of the groupoid
fibers, see Lemma 4.1). The idea is to consider the algdbrad; x Ay Which
would allow us to recover “in the limit” the geometry of spacetiMe= E/G in
the case whef® is the Lorentz group. In fact, on the strength of Lemma 2.6, to
this end it is enough to consider, instead4y;, its subalgebraétgroj of bounded
functions.

We now define the bilateral action of the aIgebﬂfg}Oj on the algebrad. in
the natural way

(@ f)—a-f (f,a)—> f-a

forac A, f e Agmj.We evidently hava - f = f - a. Now, we define the algebra

A=A x Agroj with the following operations:

(an, f1) + (@2, f2) = (@ + &, f1 + f2),
(a1, f1) x (a2, f2) = (au * @ + fraz + foau, f1f2),
(@ )" = (@, f).
We shall also use the additive notation by writimg- f instead of &, f). In this
way, we obtain the involutive algebsd = A x Agm- with unitl = 0+ 1, where
1is a constant function having everywhere the value 1. This is the unitization

of the algebraAd. which is essentially equivalent to the compactification of the
corresponding noncommutative space (Gracia-Baatal., 2001, pp. 13-14).
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Let us now define the representation: A — EndH, of the algebrad =

Ac x A, in the Hilbert spacé{q = L(I'y(,)) = L%(I'q) by

q@+ £)E) = Tq@)E) + 7q( 1)), 3)
where
1 -1
A 4@)E) = / a(yy () dn
and
2a(1)E) = 1@, ().

We also define the “integrated” representationotr = P o 7q, Which is, in
fact, a one-parameter family of representations.
Now, we define the norm in the algeh# in the following way:

lall = sup|74()],
gero

b

and in the algebrady ;

1 = sup|7q(f)|;
gero

and finally for the algebral = A x A5,

@ )l =maxliall, I| i}

The algebrad completed with respect to this norm i€4-algebra. We could use
the algebrad (or its “operator version’(A)) to construct a noncommutative
space. The geometry of this space would be “fully desingularized” (Heller and
Sasin, 1999, Section 7).

5. TOY MODELS

In this section we compute two simple models to illustrate the above con-
struction. Although they are extremely naive, they nicely show subtleties of the
“desingularization” process.

5.1. ModelRx Z,

In this exampleE = R andG = Z,, and the action oZ, on E is given by

(p, 1)~ p and (@,—-1)— —p.
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The base space (“spacetima) = E/Z, is clearly a half-line with a singularity
atx = 0. It is a regular singularity since it can be removed by embedirig a
larger space (in this case,R). We can think ofp € E as of a frame (a vector) at
x € M, which is either unmoved or reflected By. ThenE is the total space of
theZ,-frame bundle oveM, and the differential groupoil = E x Z, is formed
by two disconnected lines. The fibers of the groupoid are

Fp = {(pv 1)1 (pv _l)}v rp = {(p1 1)1 (_ pv _1)}

We define the algebtd on the groupoidd = C*°(E x Z,, C). Inthis simple
model, the usual function multiplication would be all right; however, since we want
to illustrate a more general situation, we define the following noncommutative
multiplication:

@*b)(y)= > a()b(x).

Y=Y2071

Because of th&, grading we can write

A= {(Z;): aeC“(R,C)}.

The subalgebral,; is
Aproj = {(Z) : ae C®(R,C),ais aneven functio}w.

It is surely the differential structure on the half-line.
The representatiof(y) : E x Z, — End(?(19®), ")) of the groupoid
E x Z, can be readily computed. We obviously have

L(p, 1) = idiz(re);
and since foty = (p, —1) the groupoid fibers are
' ={(p, 1), =p, -1, 'Y ={(p,-1), (~p, 1)},

we easily compute that transforms the basis vectorsIf(I"(")) into the basis
vectors inl2(I"" ) in the following way: ¢) — (2), () — (3). Therefore,

L(p, —1) = ((1) 2)

(For instance£(p, —=1)(3)(p, —1) = (5)((p, =1)"*(p, —1)) = (5)(p, 1) = 1.)
Now, we shall find the representation of the algeldrin the Hilbert space
I2(T"p). It can be easily seen that

12(p) = {(2) ) szec} ~c2,
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and the representation is given by

T@E) = Y a()E(n).

Y=VY20y1

If we choose the basis ), (2)) in C?, we easily compute

(7p(@))pee = oD s
PEVPE T \a(p, -1) a(—p, +1) peE.

(For instance, mp(@)(s)(p, 1) =a(p, 1)(5)(p, 1)+ a(—p, —1)(E)(p, —1) =
a(p,1)-1+a(—p, —1)- 0= a(p, 1))

Letus now analyze the situation at the singulaxity 0. The “singular fibers”
are

Cp =" ={0,1),(0,-1)}, 7wm(po) =0,

andl'f = I'p, N TP =~ Z, (for nonsingular fibers we evidently havg ~ {e}).
Since the fiberg ) and ") over the singularity coincide, the groupoid
representatiorf reads

£(0, 1)= £(0, —1) = idz(ro).

The representation of the algebtat the “singular fiber” is clearly of the form

@ = (2 F).

whereas at all other fibers

a, ag
a) = .
@ = (2 %)
As we can see, in this case, both the representation of the groupoid and the repre-
sentation of the algebra distinguish the “singular fiber” from other fibers.

5.2. ModelRx R

In this model, we assumE =R andG = (R, +) = {Ta: ae R, Ta(x) =
X + a}. We evidently have the actida x G — E givenby §, a) — X + a, which
allows us to define the groupold= R x G. Its fibers are

I'p={(p,7): 7 € R} ={p} xR,
which are, of course, “vertical lines,” and
rP={(pt " t): teR},

which are lines inclined by an angle of4with respect to the previous ones (to see
this, introduce the coordinates= pt~! = p —t, y = t). Therefore, all fibers are



932 Heller and Sasin

equivalent, and consequentiy = E/G = {point}. The situation is seemingly not
unlike in the closed Friedman universe with tiMdoundary where topologically
everything reduces to a single point. However, we can easily see that the isotropy
groupT'}h =~ {e}, for every p € E, which is the typical situation for nonsingular
points (for malicious singularities the isotropy group is isomorphic to the entire
groupG). Therefore, in this exampldyl is a one-point space and not a malicious
singularity.

The representation (1) of the groupdids

L(p, )(E)(pt, 1) =&(p+t, T —1).

Also this representation does not show any singularity.
We define the algebrd = C(T", C) with the multiplication

@)= [ a(pr.t=b(p. o)
I'p=R

where we have assumed= (p, t), y1 = (p, 7). This leads to the algebra repre-
sentation

ro(@)(E)() = /R a(pr, t — D)E(p, 7)

for all p € E. Thus although “macroscopically” the considered space consists of
a single point, from the “quantum point of view” (as represented by operators on
a Hilbert space) it is a rich space.

6. MALICIOUS SINGULARITY
6.1. General Case

We now apply the above machinery to investigate the structure of malicious
singularities. A singularity isnaliciousif it is a one-element orbit of the action
of the groupG on the structured spade and if the subalgebr&2°(E) C A of
G-invariant functions ork (i.e., functions that are constant on the orbit€&9fis
isomorphic toC. Let thenxy € 3dM be a malicious singularity. For simplicity we
assume thad M = {Xq}. Therefore, we havél = E/G = {Xp} U Eo/G, where
Eo = E\(rm) (o). We also havery (po) = Xo, po € E. The fiber over the ma-
licious singularity is a fixed point of the action of the groGpon E, poG = po.
Besides this fiber the action &f is free, i.e. G acts freely orky, i.e.,my : Eg —
Eo/M is aG-bundle.

Now, we construct the differential groupoid= E x G. Since in the mali-
cious singularityxg € d,M, poh = po for everyh € G, we have

Fp =T ={(po,h): he G} = pp x G~G.
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From this formula it is evident that the fiber over the malicious singularity can be
given the structure of the group manifdBli(if G is a Lie group). In this way, also
malicious singularities can be represented by well-behaved structures. Therefore,
we can truly speak about the “desingularization” procedure. The “largeness” of the
isotropy group at the singular fiber can be regarded as a measure of the “strength
of the singularity. Indeed, in the extreme casespif, b) lies in the fiber over the
malicious singularitytheﬁgg =Ty, NI >~ G, andifu = (p, h) lies in the fiber

over a nonsingular point dfl thenI'} ~ {e}. Let us also notice that for the fiber
over the malicious singularitjxg} we have (see Lemma 4.1)

JTpe =P = prtxo).

geG geG

The differential dimension of at the singularityg is zero.

The representation of the groupoid in the bundle of Hilbert spaces is given
by formula (1). For the fiber over the malicious singularity we had{s) = r (y),
which impliesy 15 = 1, and consequentlg(y) = id z(rda. We thus have

Proposition 6.1. The representatiof(y) of the transformation groupoid, for
y being an element of the groupoid fiber over the malicious singularity, is reduced
to a single identity operator on the Hilbert spacé(L4)) = LI ™). o

In physically significant cases (for instance, in the Schmildilsoundary
construction)G is assumed to be the connected component of the Lorentz group.
This group is not compact, and consequently the algdhsanot unital. Therefore,
we must perform the unitization of this algebra (see Section 4). Since in the case
with the malicious singularityl,.o; = C, the algebra on the groupoitl= E x G
is A = A; x C, and its representation (3) assumes the form

7p(@ + () = T p(@)(E) + 7 pl(C)(€)
- / a(y v )E0m) ) + He(®),

Cp

whereH(¢) =c- & forall p € E.

6.2. Two-Dimensional Friedman Universe

The closed Friedman world model is a classical example of a solution to the
Einstein field equations with two malicious singularities. In the present section,
we analyze its two-dimensional analogue (Bosshard, 1976; Dodson, 1978) with
the help of our machinery. We consider the spacetime

N ={(n x): n€(0,T), x € S,
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where (0,T) C R. OnN there is the metric
ds’ = R*(n)(—dn” + dx?)

such thatR?(n) — 0 asy — 0. This corresponds to the initial singularity. We can
also assume that there exists the final singularity, i.e.,Ri@f) — 0 asn — T.
However, in the present analysis we shall focus only on the initial singularity.
Let Riq)[f,’;] be a frame inN (the factorﬁ is needed to guarantee the
orthogonaﬁlty of the frame in the above metric). All frames at a given pgint)

N can be obtained by rotating
1 [coshh sinha ][ 9,
R(y) | sinhA coshi || 9, |
It can be demonstrated that the mapping

N [coshk sinh/\} @

sinhA  coshi

gives the isomorphism of the grouB (+) with the matrix group
cosht sinht | .
G= ”:cosht sinht]' te R}'

The homomorphism (4) is obvious. To show the homomorphism in the reverse
direction let us notice that the matrices Gf have the form § 3] with a > 1
anda? — b? = 1. There exists exactly oresuch that sinh = b. Thereforea =

V14 b? = /14 sinhA? = coshi (the minus sign is excluded sinee> 1). In

the following we shall assume that the above matrices are multiplied by the factor

(R(n))~*. We thus can write the total space of the positively oriented component
of the orthonormal frame bundl@ N over N in the form

ON={(n x,A): ne(0,T),x € S,xreR}.

This frame bundle is globally trivial. One can easily check tHat ON/R.

Since we have the actiddN x R — ONdefined by (4, x, A),t) — (1, x,
A+ 1), we can construct the transformation groupdid= ON x R = {(n, x,
Mt): ne(0,T),x e S teR) If y el we shall writey = (p, t), and
diy)=p=, x,A),r(y) = pt= (. x. > +t). The groupoidfibers are as usual

Fp={(pt): teR}, TP={(pt}t): teR}.

Two fibersT', andI'y are equivalent ifp = (n, x, A1) andqg = (i, x, 22). Let us
notice that the structure of the equivalence classes of this relation is very similar
to that of the modeR x R discussed in Section 5.2.

" is obviously a Lie groupoid. It is known (Bosshard, 1976; Dodson, 1978)
that the fiber (in Schmidt’s fiber bundle) over the malicious singularity;“at 0”
consists of a one point; let us denote it py. The total space of the generalized
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fiber bundle (see Section 2) B= E U {po}, and the groupoid” = E x G is a
differential groupoid.
The groupoid representation (1) in this model assumes the form

L(p,)s(pt, 1) =&(p+t, 7 —1).

Over the malicious singularity the fiber§) andI™ ) coincide, and the “singular
fiber” is represented by the identity operator (see Proposition 6.1).

Since the grous = R is noncompact we must perform the unitization of the
algebrad, = C*(T", R). Therefore, as the algebra on the grouddidle assume
A = Ac x Aproj, With the operations as defined in Section 3. Let us notice that if
a e A then

— a(n, x,»,t) if(n, x, 2, t)el,
=1 ) if(n A1) €T,

and
n—0

Representation (2) of this algebra is

mola+ DO = [ alrri et + 1),
p

ae Ac, f e Apoj, Which is a nontrivial operator algebra also in the case when

p = po lies in the fiber over the malicious singularity.

7. RESULTS

Inthis paper, we have introduced the groupoid conceptin the category of struc-
tured spaces. In the same way that structured spaces are substantial generalizations
of smooth manifolds, differential groupoids are generalizations of smooth or Lie
groupoids. This opens a new field of groupoid applications, both in pure mathe-
matics and in theoretical physics, in domains in which one encounters nonsmooth
situations. We have applied this new tool to the study of spacetime singularities as
they appear in relativistic physics and obtained the following results:

1. To further develop the procedure of “spacetime desingularization” we
have constructed the generaliz8eframe bundle over spacetime with a
singular boundary (in the category of structured spagesQM — M U
dM (Schmidt’s frame bundle over a spacetime withbisoundary being
a special case), and then the transformation groupeidOM x G.Tis
not a Lie groupoid but a Hausdorff differential groupoid (in the category
of structured spaces).
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2. The groupoid fiberg’, and 'Y, for all u € I'°, are isomorphic to the
group G (also over malicious singularities). For all groupoid fibers over
nonsingular points the isotropy grodp NI =T is trivial (i.e., iso-
morphic with{e}). For singular fibers the isotropy group is nontrivial: for
fibers over malicious singularitidy; is isomorphic to the entire group,
and for weaker singularitieS} is isomorphic to a subgroup @. In this
way, the isotropy group of a given groupoid fiber can be thought of as
measuring the “strength” of the corresponding singularity.

3. The transformation groupoidcan be represented in a “bundle of Hilbert
spaces” suitably defined on the groupoid fibers in such a way thatto a given
elementy of I' (an “arrow”) there corresponds an operator transforming
the Hilbert space defined on the fiber determined by the beginnipngmf
the Hilbert space defined on the fiber determined by the end bif this
way, the structure of the groupoid fibers (also of the ones over singularities)
is reflected in the structure of operators on the bundle of Hilbert spaces.

4. Spacetime with singularities (even the strongest ones) can be regarded as
a noncommutative space. Its geometry can be done in terms of a noncom-
mutative algebrad defined on the differential transformation groupoid
I' = OM x G. This algebra can be completed to the-algebra and rep-
resented in a Hilbert space defined on the groupoid fibers. The correspond-
ing operator algebra on these Hilbert spaces depends on the geometric
structure of a given spacetime with singularities.
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